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SUMMARY

Therapeutic anticancer strategies that target and in-
activate the epidermal growth factor receptor (EGFR)
are under intense study in the clinic. Here we de-
scribe the mechanism of EGFR inhibition by an anti-
body drug IMC-11F8. IMC-11F8 is a fully human anti-
body that has similar antitumor potency as the
chimeric cetuximab/Erbitux and might represent
a safer therapeutic alternative. We report the X-ray
crystal structure of the Fab fragment of IMC-11F8
(Fab11F8) in complex with the entire extracellular re-
gion and with isolated domain III of EGFR. We com-
pare this to our previous study of the cetuximab/
EGFR interaction. Fab11F8 interacts with a remark-
ably similar epitope, but through a completely differ-
ent set of interactions. Both the similarities and dif-
ferences in binding of these two antibodies have
important implications for the development of in-
hibitors that could exploit this same mechanism of
EGFR inhibition.

INTRODUCTION

The epidermal growth factor receptor (EGFR) is the target of

several current and developing anticancer therapies, including

monoclonal antibodies directed against the extracellular region

of the receptor and small-molecule inhibitors of the intracellular

tyrosine kinase domain (Marshall, 2006; Scaltriti and Baselga,

2006). In fact, the EGF receptor was the first cell-surface recep-

tor to be associated directly with human cancers (Todaro et al.,

1976). We have been interested in understanding the structural

basis of EGFR inhibition by antibodies against the extracellular

region, both to enhance our understanding of the normal mech-

anisms of receptor activation and to gain insight into how to

develop improved therapeutic agents.

The first step in normal EGFR activation is ligand-induced

receptor dimerization (Schlessinger, 2000), which brings two

intracellular kinase domains together that become activated

allosterically (Zhang et al., 2006). Structural snapshots of the

ligand-induced dimerization process have been provided by

X-ray crystallographic studies of the extracellular regions of

EGFR (Ferguson et al., 2003; Garrett et al., 2002; Ogiso et al.,

2002) and the other three members of the EGFR/ErbB family of
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RTKs, namely ErbB2/HER2/Neu (Cho et al., 2003; Franklin

et al., 2004; Garrett et al., 2003), ErbB3/HER3 (Cho and Leahy,

2002), and ErbB4/HER4 (Bouyain et al., 2005). The unliganded

extracellular regions of EGFR, ErbB3, and ErbB4 all adopt a char-

acteristic ‘‘tethered’’ conformation (Bouyain et al., 2005; Cho

and Leahy, 2002; Ferguson et al., 2003) in which the primary

receptor dimerization site is occluded by intramolecular interac-

tions between two cysteine-rich domains (domains II and IV).

Upon ligand binding, the receptor undergoes a dramatic domain

rearrangement (Burgess et al., 2003) in addition to more local

ligand-induced conformational changes (Dawson et al., 2005)

that serve to expose and optimize the receptor dimerization

site. As shown in Figure 1, a single EGF molecule binds simulta-

neously to both domains I and III of the EGFR extracellular re-

gion, forcing it to adopt the extended configuration that is capa-

ble of domain II-mediated dimerization (Burgess et al., 2003).

This structural model for ligand-induced EGFR dimerization

suggests several possible approaches for inhibition, some of

which are exploited by therapeutic antibodies that have emerged

from early screens (Ferguson, 2004). For example, the chimeric

cetuximab (Erbitux) antibody inhibits EGFR activation by com-

peting directly with EGF for its binding site on domain III of the

receptor (Li et al., 2005). Cetuximab binding also sterically im-

pedes adoption of the extended configuration. On the other

hand, the anti-ErbB2 antibody pertuzumab binds directly to the

presumed domain II (hetero)dimerization site of ErbB2 (Franklin

et al., 2004), and the anti-EGFR antibody mAb806 binds to a do-

main II epitope close to the receptor’s dimerization site (Johns

et al., 2004).

In an effort to generate fully human anti-EGFR antibodies that

inhibit the receptor, a nonimmunized human Fab phage display

library containing 3.7 3 1010 unique clones (de Haard et al.,

1999; Lu et al., 2004b) was screened for Fab fragments that

would bind A431 epidermoid carcinoma cells (which express

high levels of EGFR) (Lu et al., 2004b) and also compete with ce-

tuximab for binding to the cell surface (Liu et al., 2004). Of four

unique Fab clones that were selected, only one (termed 11F8)

displayed a dose-dependent inhibitory effect on EGF-stimulated

EGFR activation in A431 cells (Liu et al., 2004). A fully human

antibody bearing 11F8 antigen-combining regions (IMC-11F8)

inhibits EGFR activation in several cell lines (Liu et al., 2004;

Lu et al., 2004b), blocks tumor growth in xenograft models (Lu

et al., 2005; Prewett et al., 2004), and has performed well in

phase I clinical trials (Kuenen et al., 2006). As a fully human anti-

body, IMC-11F8 has a significant advantage over the chimeric

cetuximab antibody, which contains entirely mouse-derived
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Figure 1. Ligand-Induced Dimerization of

EGFR

In the unliganded state, EGFR exists as a tethered

monomer (left). Domain II (green) interacts with

domain IV (white, with secondary structure high-

lighted in green); domains I (white with red high-

lights) and III (red) are far apart. The arrangement

of the domains in the ligand-induced, dimeric state

(right) is dramatically different. Domains I and III

are closer together and interact with the ligand

(EGF, cyan). The colors of the right-hand molecule

in the dimer are lightened for contrast. Domain IV

in the dimer is modeled as described (Ferguson

et al., 2003). The gray line represents the approxi-

mate location of the membrane. This figure uses

coordinates from PDB ID codes 1YY9, 1NQL,

and 1IVO.
sequences in its variable domains that are fused to human con-

stant domains. Cetuximab, which is approved for use in ad-

vanced colorectal cancer and head and neck squamous-cell

carcinoma, elicits immune reactions in �19% of cases (Lenz,

2007) (Erbitux [cetuximab], package insert, ImClone Systems,

New York and Bristol-Myers Squibb, Princeton, NJ, 2006). As

expected for a fully human antibody (Weiner, 2006), IMC-11F8

has shown no evidence of such immune hypersensitivity in

clinical trials (Kuenen et al., 2006).

To establish the mechanism of EGFR inhibition by this fully hu-

man therapeutic antibody, we determined the X-ray crystal

structure of the Fab fragment of IMC-11F8 bound to the EGFR

extracellular region. IMC-11F8 recognizes a remarkably similar

EGFR epitope to that previously described for cetuximab (Li

et al., 2005), and these two antibodies likely share a similar

mode of EGFR inhibition. The details of the antibody/receptor in-

teractions are, however, quite different. We discuss features of

the EGFR epitope recognized by these two antibodies that are

likely to make it well suited for this type of molecular interaction.

RESULTS AND DISCUSSION

IMC-11F8 Binds to the EGF-Binding Site of EGFR
To understand how IMC-11F8 inhibits EGF activation of EGFR,

we analyzed its binding to the isolated EGFR extracellular region

and sought to determine the structural basis for its EGFR rec-

ognition. We generated the antigen-binding Fab fragment of

IMC-11F8 (Fab11F8) by papain digestion of the IgG protein.

The EGFR extracellular region (sEGFR) was produced in insect

cells as described (Ferguson et al., 2000).

Using surface plasmon resonance (SPR), we analyzed sEGFR

binding to Fab11F8 that had been immobilized on a CM5 biosen-

sor chip. As shown in Figure 2A, sEGFR binds strongly to

Fab11F8, with a KD value of 3.3 ± 0.5 nM, similar to values re-

ported previously for the binding of an scFv comprising the VL

and VH domains of IMC-11F8 to immobilized sEGFR (Lu et al.,

2004a). This compares well with the KD value of 2.3 ± 0.5 nM

for the cetuximab Fab binding to sEGFR (Li et al., 2005). To ex-

amine the ability of Fab11F8 to block EGF binding by sEGFR,

we used SPR to monitor the association of sEGFR (600 nM)

with immobilized EGF in the presence of increasing concentra-

tions of Fab11F8. Fab11F8 efficiently impaired EGF binding by
Structure 16,
sEGFR, which fell to almost zero upon addition of one molar

equivalent of the Fab fragment (Figure 2B).

Crystal Structure of a Fab11F8/sEGFR Complex
Crystals of a purified Fab11F8/sEGFR complex that diffracted to

3.3 Å resolution were obtained, and the structure was solved us-

ing molecular replacement (MR) methods. Domain III of sEGFR

and a homology model for the Fab were placed in the

Fab11F8/sEGFR structure using the program MOLREP (Vagin

and Teplyakov, 1997), and used to calculate starting phases.

Following several rounds of model building and refinement, sig-

nificant additional density could be seen for the majority of do-

main IV and the region of domain II that extends from domain

III to the domain II/IV intramolecular tether interaction. Even

with this improved model, an MR solution for domain I could

not be identified. No interpretable density could be discerned

for the remainder of domain II or any of domain I in composite

simulated annealing (SA) omit maps calculated using CNS

(Brunger et al., 1998), or in density modified maps with reduced

phase bias calculated using the program DM (CCP4, 1994). This

lack of density for a large region of sEGFR prevented complete

refinement of this structure (Table 1).

Although we cannot discern precise details of the Fab11F8/

sEGFR complex structure, several statements can be made

from the partially refined structure (Figure 3A). First, it is clear

that Fab11F8 interacts primarily (if not exclusively) with domain

III, consistent with its ability to compete with both EGF and ce-

tuximab for receptor binding. Second, it is clear that Fab11F8-

bound sEGFR adopts the tethered configuration. Interpretable

density could be seen for domain II starting from amino acid

239 which immediately precedes the dimerization arm. The di-

merization arm makes all of the same contacts with domain IV

that are observed in other structures of tethered sEGFR (Fergu-

son et al., 2003; Li et al., 2005). Indeed, the tethered conforma-

tion of sEGFR is strongly preferred in the absence of ligand

(Dawson et al., 2007), and does not appear to be prevented by

binding of Fab11F8 (or FabC225). Regarding our inability to de-

fine domain I in this structure, we note that domain I adopts two

quite different positions with respect to domain III in previously

published tethered sEGFR structures (Ferguson et al., 2003; Li

et al., 2005). In comparing all four tethered sErbB structures pub-

lished to date (two for sEGFR, and one each for sErbB3 and
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Figure 2. Fab11F8 Binds to sEGFR and

Inhibits EGF Binding to sEGFR

(A) SPR analysis of sEGFR binding to immobilized

Fab11F8. A series of sEGFR samples of the indi-

cated concentrations was passed over a Biosen-

sor surface to which Fab11F8 had been covalently

coupled. A representative data set of the equilib-

rium SPR response for each sample, expressed

as the fraction of the maximum binding, is plotted

as a function of the concentration of sEGFR. The

inset shows that no additional binding is seen at

higher sEGFR concentrations. The curve indicates

the fit to a simple one-site Langmuir binding equa-

tion for the data set shown. A KD value of 3.3 ± 0.5

nM was obtained from at least three independent

binding experiments.

(B) The ability of Fab11F8 to compete for sEGFR binding to immobilized EGF is shown. The indicated molar excesses of Fab were added to samples of fixed

concentration of sEGFR (600 nM), and these samples were passed over immobilized EGF. The equilibrium SPR responses obtained for each sample, expressed

as a fraction of the response with no added Fab, is plotted as a function of the molar excess of Fab. Error bars indicate the standard deviation of at least three

independent measurements. All binding is abolished at a 1:1 stoichiometry of Fab11F8/sEGFR and the IC50 value for these conditions is 350 nM.
sErbB4), the most variable, and presumably most flexible, re-

gions of domain II are immediately before and immediately after

the dimerization arm. The relationship between domain I and

the N-terminal part of domain II appear quite constant across

these structures (Bouyain et al., 2005), as does the relationship

between domain III and the C-terminal part of domain II (Dawson

et al., 2007). By contrast, the relationship between the N- and C-

terminal parts of domain II is more variable. In the absence of

strong crystal packing contacts to hold domain I in a single orien-

tation with respect to domain III in our Fab11F8/sEGFR complex,

we suggest that domain I must adopt multiple orientations in the

crystal, leading to our inability to place it in electron density maps.

Crystal Structure of Fab11F8 Bound to Isolated Domain
III from sEGFR
Because the partially refined Fab11F8/sEGFR complex struc-

ture suggested that Fab11F8 binds exclusively to domain III

(Figure 3A), we next analyzed 11F8 binding to isolated domain

III from sEGFR (sEGFRd3). sEGFRd3 was produced in Sf9 cells

infected with recombinant baculovirus that directs the expres-

sion of a protein comprising the native signal peptide of EGFR

plus the first four amino acids of domain I fused to amino acids

311–514 of mature EGFR, followed by a hexahistidine tag (Li

et al., 2005). Purification was as for sEGFR (Ferguson et al.,

2000). Using SPR, we found that sEGFRd3 binds to immobilized

Fab11F8 with a KD value of 1.0 ± 0.1 nM (Figure 3B). Thus,

Fab11F8 actually binds with slightly higher (�3-fold) affinity to

sEGFRd3 than to full-length sEGFR, possibly because of some

steric hindrance imposed by the other sEGFR domains. This

contrasts starkly with the situation for EGF itself, which binds

more weakly to sEGFRd3 than to full-length sEGFR (Kohda

et al., 1993; Lemmon et al., 1997; Li et al., 2005). As depicted

in Figure 1, both domains I and III of sEGFR are required to

form the high-affinity sEGFR ligand binding site (Garrett et al.,

2002; Ogiso et al., 2002).

In order to examine the details of Fab11F8 binding to

sEGFRd3, we purified the Fab11F8/sEGFRd3 complex and

grew crystals that diffracted to 2.6 Å resolution. The Fab11F8/

sEGFRd3 complex structure was solved by MR methods using

domain III of sEGFR and the Fv fragment of the Fab homology

described above. The eight sEGFRd3 plus Fv fragments in the
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asymmetric unit of this crystal form were placed first using the

program Phaser (McCoy, 2007). Subsequently the Fab constant

regions (domains CH1 and CL) could be located. The model was

manually rebuilt using electron density maps calculated with

strict noncrystallographic symmetry constraints. Restraints were

released in later stages of refinement (Table 1).

Fab11F8 binds to the more C-terminal end of domain III, and

occludes 932 Å2 of surface area on domain III from solvent (Fig-

ure 4; a total area of 1935 Å2 is buried in the complex). All

contacts between Fab11F8 and domain III come from the com-

plementarity determining regions (CDRs) of the Fab, with ap-

proximately two thirds of the buried surface contributed by the

VH domain, and the remainder contributed by the VL domain

(Figure 3C). The shape complementarity parameter (Lawrence

and Colman, 1993) for the Fab11F8/sEGFRd3 complex is 0.69,

slightly higher than that typically observed (�0.65) for an anti-

body/antigen complex, consistent with the high affinity of

Fab11F8 for its antigen. As shown in Figure 3D, interactions

with domain III are contributed by CDRs 1 and 3 from the VL do-

main (L1 and L3) plus CDRs 1, 2, and 3 from the VH domain (H1,

H2, and H3). CDR 2 from VL (L2) makes no contacts. L1 and L3

from Fab11F8 contact the most C-terminal parts of the domain

III epitope. The side chains of Q27 and Y32 (in L1) make close

contacts or hydrogen bonds with the C-terminal strand of the do-

main III solenoid (or b helix) and the a helix that immediately fol-

lows it. L3 also makes main-chain-to-main-chain hydrogen

bonds with this C-terminal region of domain III, with additional

stabilization by one side-chain-to-main-chain hydrogen bond

plus two water-mediated interactions (Figures 3D and 5A).

The majority of specific interactions between Fab11F8 and do-

main III involve the heavy-chain CDRs. H1 lies in the center of the

VH/domain III interface, and plays a role in coordinating interac-

tions of H2 and H3. The two H1 side chains that make hydrogen

bonds to domain III (D31B and Y33) interact with sEGFR residues

that are also contacted by H2 side chains. Six of the ten side

chains in H2 make hydrogen bonds with domain III (Figures 3D

and 5A). Each H2 residue involved is a hydroxy amino acid

(Y50, Y52, Y53, S56, and T57) or an acidic residue (D58), as is

typical for CDR-mediated interactions of high-affinity antibodies

isolated from phage-display screens (Fellouse et al., 2005). H3

presents two hydrophobic side chains (I97 and F98) that occupy
hts reserved
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Table 1. Data Collection and Refinement Statistics

Fab11F8/sEGFRd3 Complex Fab11F8/sEGFR Complex

Data Collectiona

Space group P21 C2221

Unique cell dimensions a = 154.4 Å, b = 139.1 Å, c = 175.3 Å; b = 90.02�b a = 77.8 Å, b = 70.9 Å, c = 147.1 Å

X-ray source CHESS F2 CHESS A1

Resolution limit 2.6 Å 3.3 Å

Observed/unique 875,685/231,396 132,555/21,995

Redundancy 3.8-fold 6-fold

Completeness (%) 95.6 (96.8) 100.0 (100.0)

Rsym
c 0.097 (0.456) 0.188 (0.580)

<I/s> 13.1 (2.4) 9.13 (3.1)

Refinement

Resolution limits (Å) 43–2.6 130–3.3

Number of reflections/number

in test set

231,396/11,664 21,865/1,120

R factor (Rfree)d 0.23 (0.29) 0.28 (0.37)

Model

Protein 8 Fab11F8/sEGFRd3 complexes 1 Fab11F8/sEGFR complex

Residues 310–502 (sEGFRd3)e Residues 239–613 (sEGFR)

Residues 1–213 (light chain) Residues 1–213 (light chain)

Residues 1–222 (heavy chain);

missing residues 137–141f

Residues 2–222 (heavy chain)

64 saccharide units 9 saccharide units

1,035 water molecules, 8 sulfate ions

Total number of atoms 39,037 5,645

Rmsd bond lengths (Å) 0.012 0.022

Rmsd bond angles (�) 1.44 2.64
a Numbers in parentheses refer to last resolution shell.
b Despite the small deviation of b from 90�, these data could not be merged in an orthorhombic point group.
c Rsym = SjIh � < Ih >j/SIh, where < Ih > = average intensity over symmetry-equivalent measurements.
d R factor = SjFo � Fcj/SFo, where summation is over data used in the refinement; Rfree includes only 5% of the data excluded from the refinement.
e Chains A and M start at 308; chains B, E, and S start at 309.
f Number of missing amino acids varies by chain, with a maximum of eight amino acids missing (chain C).
a hydrophobic pocket on the surface of domain III (Figures 3D

and 5A). This is the same pocket that accommodates the essen-

tial leucine side chain of the EGFR-activating ligands (L47 in EGF

and L48 in TGFa), providing one clear explanation for why

Fab11F8 binding and EGF binding to sEGFR are mutually exclu-

sive. The H3 hydrophobic loop is held in place in part by the H1

loop, which makes hydrogen bonds with sEGFR residues H409,

S418, and S440 at the periphery of this critical hydrophobic

pocket.

Fab11F8 Recognizes the Same sEGFR Epitope
as FabC225
The epitope for Fab11F8 on domain III overlaps almost exactly

with that recognized by cetuximab (Li et al., 2005). The 932 Å2

Fab11F8 epitope (red in Figure 4A) corresponds remarkably

closely to the 882 Å2 FabC225 epitope (yellow in Figure 4A) in

both extent and location. Despite this correspondence, the de-

tails of the interactions made by Fab11F8 are quite different

from those seen with cetuximab (see below). Although competi-

tion with cetuximab was a component of the procedure used to
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select Fab11F8, the almost precise correspondence of the epi-

topes is remarkable and suggests that this surface possesses

features that make it particularly well suited for antibody recog-

nition. Approximately 60% of the Fab11F8 epitope is also in-

cluded in the EGF binding site on domain III (blue in Figure 4A).

We asked what features of this surface of sEGFRd3 might ac-

count for this coincidence of binding sites, and summarize some

observations in Figure 4. The surface of domain III that binds

EGF, Fab11F8, and cetuximab is relatively flat, with the excep-

tion of the hydrophobic pocket that accommodates a critical

EGF/TGFa leucine or key aromatic groups from the antibodies.

The central hydrophobic region is encircled by positively

charged and other hydrophilic amino acids (Figure 4B), reminis-

cent of the organization seen in other protein/protein interaction

sites (Clackson et al., 1998). The epitopes also coincide with a re-

gion of positive electrostatic potential on sEGFRd3 (Figure 4B)

that complements negative potential in the Fab paratopes.

Another feature of the sEGFR surface that should be consid-

ered in identifying likely binding sites for therapeutic antibodies

is the degree of glycosylation. The extracellular region of sEGFR
, 216–227, February 2008 ª2008 Elsevier Ltd All rights reserved 219
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Figure 3. Fab11F8 Binds to Domain III of

sEGFR

(A) Cartoon of the Fab11F8/sEGFR complex. The

light chain of Fab11F8 is shown in yellow, and

the heavy chain in orange. Domains of sEGFR

are colored as in Figure 1.

(B) SPR analysis of sEGFRd3 binding to immobi-

lized Fab11F8 performed and analyzed as de-

scribed in Figure 2A. A KD value of 1.0 ± 0.1 nM

was obtained.

(C) Cartoon of the Fab11F8/sEGFRd3 complex in

the same orientation and colors as in (A).

(D) Detailed view of the Fab11F8/sEGFRd3 inter-

face, rotated z30� about a horizontal axis with re-

spect to (C). Secondary structure is highlighted in

yellow for VL and orange for VH. The parts of the

CDRs that interact with domain III are yellow for

L1 and L3, cyan for H1, and orange for H2 and

H3. Side chains that make direct hydrogen bond

or key van der Waals contacts are shown in stick

representation in colors as for the interacting

CDRs. The main chain of domain III of sEGFR is

show in a gray cartoon highlighted in red. Side

chains on domain III that make key contacts with

the Fab are shown in green stick representation

and labeled in black. A transparent molecular

surface is show around domain III. The darker

gray shading indicates the region of this surface

that is occluded from solvent by the interaction

with Fab11F8, defined using the program CNS

(Brunger et al., 1998).
is �20% carbohydrate by mass, with ten glycosylation sites

(Zhen et al., 2003), four on domain III. In Figures 4C and 4D,

high-mannose oligosaccharide chains have been placed at

each glycosylation site on the receptor, guided by the one or

two saccharide units observed in the crystal structures. Because

the oligosaccharides will be highly mobile, this model is intended

only to give a sense of scale of the surface glycosylations on

EGFR. As a result of their mobility, the carbohydrates would

likely occlude (at least partially) much larger areas of the surface

than suggested here. Two faces of the domain III solenoid are

highly occluded by carbohydrate, and are therefore less likely

to be significant sites of antibody interaction. In addition, a sugar

chain on domain IV will impact part of the domain III surface. The

region of the domain III surface that includes the Fab11F8 and

FabC225 epitopes plus the EGF/TGFa binding site corresponds

to the area on the surface that is the most unfettered by oligosac-

charides (Figure 4C). This issue is likely to provide a large part of

the explanation as to why the epitopes for Fab11F8 and cetuxi-

mab are so very similar. It would be difficult to select an overlap-

ping epitope of similar surface area that is not influenced by

nearby oligosaccharides to at least some degree. There are

few other regions on the surface of sEGFR that share these char-

acteristics (as shown in Figure 4D for electrostatic potential and

carbohydrate occlusion). A combination of electrostatic and

carbohydrate steering likely promotes association of binding

partners with the flat, hydrophobic face of domain III.
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The Same sEGFR Epitope Is Recognized by Quite
Distinct Sets of Fab Interactions
Although Fab11F8 and FabC225 share essentially the same epi-

tope on sEGFRd3, they recognize it with sets of interactions that

are clearly different (Figure 5). L1 is the only antigen-binding loop

that shows significant sequence similarity between the two Fabs

(Figure 5C), and the side chain of Q27 in L1 interacts with N473

on domain III in both complexes (Figures 5A and 5B). L2, which

does not form part of the Fab11F8 paratope (Figure 5A), contrib-

utes an important tyrosine side chain (Y50) in the FabC225/

sEGFRd3 interface (Figure 5B) that takes the place of Y32 in

L1 of Fab11F8. L3 plays a broadly similar role in Fab11F8 and

FabC225 interaction with sEGFRd3, making primarily back-

bone-mediated interactions with the C-terminal strand of the

domain III solenoid (Figures 5A and 5B).

Interactions mediated by the VH CDRs show less commonality

between the two Fabs. H1 is involved in Fab11F8 but not

FabC225 binding to sEGFRd3. H2 from Fab11F8 and FabC225

interact with essentially the same set of residues in sEGFRd3,

but employ an entirely different set of residues and interaction

types to do so. Despite their sequence differences, H3 from

the two Fabs both project hydrophobic side chains into the pre-

viously mentioned apolar pocket that EGF binding also employs.

Fab11F8 projects the I97 and F98 side chains into this pocket,

whereas FabC225 projects Y98. Beyond this, it is notable that

H3 is highly enriched in hydroxy amino acids (TYYDY) in
hts reserved
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Figure 4. Features of the Shared Fab11F8,

FabC225, and EGF Binding Region on

Domain III

(A) Molecular surface representations of domain III

of sEGFR with the contact regions (as defined in

Figure 3D) colored red for Fab11F8, yellow for

FabC225, and blue for EGF. Orientation is looking

down onto the domain III binding site.

(B) Functional features of the domain III molecular

surface. In the left panel, the surface is colored by

atom type: negative, red; positive, blue; polar oxy-

gen, pink; polar nitrogen, light blue; and apolar,

white. The right panel shows the electrostatic po-

tential from �2.5 kT (red) to +2.5 kT (blue) pro-

jected onto the surface. Electrostatic potential cal-

culations used the adaptive Poisson-Boltzmann

solver (APBS) implemented in PyMOL (Baker

et al., 2001; DeLano, 2004).

(C) Orthogonal views of domain III. High-mannose

chains (yellow) have been placed at each position

of glycosylation on sEGFR guided by the one or

two ordered sugar groups that are seen in the

X-ray crystal structures. For reference, the contact

region of Fab11F8 is shown (red).

(D) Three orientations of sEGFR are shown with the

electrostatic potential, as in (B), projected on the

surface and high-mannose chains shown. Both

electrostatic and carbohydrate steering might

play a role in guiding Fabs or ligands to the shared

binding site on domain III.
FabC225, whereas H2 has this characteristic in Fab11F8. This

allows the FabC225 H3 to participate in hydrogen bonding that

requires involvement of H1 in the Fab11F8 case.

The distinct sets of sEGFR interactions made by Fab11F8 and

FabC225 suggest a difference in their pH sensitivity. It is well

known that growth factor binding to EGFR is highly pH sensitive,

and that pH sensitivity affects ligand/receptor trafficking (French

et al., 1995; Nunez et al., 1993). TGFa binding is highly pH sen-

sitive and the ligand/receptor complex will dissociate very early

in the endocytic pathway, leading to receptor recycling. EGF

binding is less sensitive to pH, and EGF-stimulated EGFR is traf-

ficked to lysosomes for degradation (Waterman et al., 1998).

Protonation (at low pH) of central histidines observed in the li-

gand/receptor binding interface are thought to disrupt the inter-

action (Garrett et al., 2002; Ogiso et al., 2002). There is likely no

such low-pH disruption of Fab11F8 or FabC225 complexes with

EGFR. H409 in sEGFRd3 forms a hydrogen bond with a D31B in

Fab11F8 (Figure 5A). Protonation of this histidine would actually

be expected to increase (rather than decrease) the strength of

Fab11F8 binding. We were able to detect a modest (�2-fold)

increase in the affinity of sEGFR for immobilized Fab11F8 at

pH 5.0 relative to that observed at pH 8.0 (data not shown).

FabC225/sEGFR interaction is likely to be insensitive to pH,

because the interface contains no groups expected to titrate

at physiological pH values (Li et al., 2005). The fact that the affin-

ity of these antibodies for EGFR is not reduced at low pH is
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likely important for the component of their therapeutic action

that involves the promotion of EGFR downregulation by internal-

ization and lysosomal trafficking (Sunada et al., 1986).

Effects of Mutations in the sEGFRd3 Epitope
To gain insight into how binding energy is apportioned across the

Fab11F8/sEGFR interface, we generated mutations at six posi-

tions in sEGFR (ringed in Figures 5A and 5B), and analyzed the

effects on binding to Fab11F8, FabC225, and EGF (Figure 6).

An alanine substitution at N473, which interacts with Q27 in L1

of Fab11F8 and FabC225, actually increased Fab affinity by

�1.5-fold, but reduced binding to EGF (which it does not actually

contact) by approximately the same amount. We speculate that

these small affinity changes reflect a loss of structural restraints

involving the N473 side chain that promote an optimal EGF-bind-

ing configuration but oppose the conformation that is most fa-

vorable for Fab binding. The side chain of S468 forms a hydrogen

bond with the Fab11F8 main chain, and lies adjacent to a hydro-

phobic pocket that accommodates the Y33 and Y50 side chains

of the Fab (Figure 5A). In the FabC225 complex, S468 forms a hy-

drogen bond with the Y100A side chain. We reasoned that plac-

ing a large aliphatic side chain at this position could improve

packing interactions in the hydrophobic pocket, although hy-

drogen bonds would be lost with L3 or H3. An S468I mutation

increased the affinity of Fab11F8 for sEGFR by almost 4-fold.

A more modest affinity increase (�1.4-fold) was seen for
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Figure 5. Fab11F8 and FabC225 Use Distinct Interactions to Recognize a Common Epitope

(A and B) Detailed view of the interactions of domain III of sEGFR with Fab11F8 (A) and FabC225 (B). The orientation is as in Figure 4A. Only those parts of Fabs

that are involved in binding are shown. Interacting CDRs are colored as in Figure 3D. Side chains from the Fab that interact with sEGFR are shown in stick rep-

resentation and labeled using the same color scheme. The epitope region on sEGFR is shown in white cartoon. Side chains from sEGFRd3 that interact with the

Fab are shown in stick representation in pink with black labels. The same set of side chains on the sEGFR are shown in both panels. For clarity, side chains that line

the hydrophobic binding pocket on domain III (F412, A415, V417, and I438) are not labeled. Hydrogen bonds are shown with dotted black lines. Key water

molecules are shown as green spheres. Side chains on sEGFRd3 that are altered in analysis of the binding site mutations (Figure 6) are ringed.

(C) Amino acid sequence alignment of the variable domains of Fab11F8 and FabC225. Only nonidentical amino acids are shown for FabC225, with

a period indicating identity with Fab11F8 and a dash indicating a gap. Amino acids involved in interacting with domain III are highlighted using the same

colors as in (A). A dot above every tenth amino acid indicates Chothia numbering that is used in the text and all figures (Chothia et al., 1986). Chothia-defined

CDRs are underlined and Kabat-defined CDRs are indicated by bold text. In the submitted PDB files, and in Li et al. (2005), the Fab amino acids are numbered

sequentially.
FabC225, and EGF binding was slightly reduced. Interestingly,

combining the effects of mutating N473 and S468 resulted in

a loss in FabC225 binding affinity, but maintained an approxi-

mate 2-fold increase in Fab11F8 affinity. These findings suggest

that van der Waals complementarity of the Fab11F8/sEGFR in-

terface is suboptimal. In turn, this observation suggests that al-

terations in Fab11F8 itself could be made that would improve
222 Structure 16, 216–227, February 2008 ª2008 Elsevier Ltd All ri
van der Waals packing across the interface, and allow higher-

affinity binding. With this in mind, the structure presented here

provides a framework for designing mutations in Fab11F8 that

will bind to EGFR with even higher affinity, using structure-based

computational methods of the sort recently described for the af-

finity enhancement of an already high affinity antibody against an

integrin I domain (Clark et al., 2006). Such an affinity matured
ghts reserved
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version of IMC-11F8 might prove to be an even better therapeu-

tic agent. It is also been suggested that very high-affinity tar-

geted antibodies might actually have less therapeutic value, ow-

ing to a restriction in tumor penetration (Adams et al., 2001). The

Figure 6. Effect of Alterations in Domain III on the Affinity of sEGFR

for Fab11F8, FabC225, and EGF
The fold change relative to wild-type sEGFR of the binding affinity for each

indicated altered sEGFR to immobilized Fab11F8 (yellow), FabC225 (ma-

genta), and EGF (black). KD values of wild-type sEGFR, determined as

described in Figure 2, are 3.3 ± 0.5 nM (Fab11F8), 2.3 ± 0.5 nM (FabC225),

and 130 ± 4 nM (EGF). Positive (upward) fold changes indicate higher-affinity

binding, while negative (downward) fold changes indicate weaker binding.

Error bars indicate the standard deviation for at least three separate measure-

ments.
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structure presented here would also provide a framework to

design lower-affinity variants of IMC-11F8.

Other mutations in the Fab11F8/sEGFR interface had the an-

ticipated effects. Mutation of K443 to alanine had no effect on

Fab11F8 and only slightly reduced the affinity of sEGFR for

FabC225 and EGF. Similarly, mutation of Q384, Q408, or H409

to alanine, alone or in combination, reduced the affinity of sEGFR

for Fabs and EGF. Mutating any of these residues will remove

important hydrogen-bonding interactions and van der Waals

contacts (Figures 5A and 5B). One exception was the Q408A/

H409A mutation that actually increased EGF binding by �2.5-

fold, probably because Q408 abuts hydrophobic residues of

EGF in the sEGFR/EGF complex.

Glycosylation and Crystal Packing Contacts
One notable feature of the packing of the domain III molecules in

the Fab11F8/sEGFRd3 crystal is the role of carbohydrate. It is

typically considered that carbohydrates are too flexible to form

crystal packing interactions and the prevailing view is that degly-

cosylation of a glycoprotein should be a prerequisite for crystal-

lographic studies (Baker et al., 1994). In the Fab11F8/sEGFRd3

crystal, there are multiple examples of sugar moieties contribut-

ing to packing interactions. For example, over a third of a 974 Å2

interface between one pair of Fab11F8/sEGFRd3 complexes in

the asymmetric unit is contributed by domain III oligosaccha-

rides. Where these oligosaccharides contribute to crystal pack-

ing, three or more well-ordered sugar residues were observed,

whereas at equivalent positions on other domain III molecules,

only a single or at most two ordered saccharide units are seen.

Interestingly, oligosaccharides also contributed to packing inter-

actions in the FabC225/sEGFR complex (Li et al., 2005). For one

crystal packing contact in the FabC225 complex, more than

60% of the 600 Å2 interface area involves sugar groups. De-

glycosylation would have hampered formation of these crys-

tal forms. Instability of deglycosylated sEGFR and sEGFRd3

precluded attempts to obtain crystals of the deglycosylated

proteins.

Comparison of the Structures of the Bound Fab
Fragments of IMC-11F8 and Cetuximab
A critical difference between IMC-11F8 and cetuximab that is im-

portant for the use of these antibodies as anticancer drugs is that

the variable domains of IMC-11F8 are of human origin, whereas

the variable region of cetuximab is of mouse origin. Given their

distinct sequence origin, it is worthwhile to compare the overall

structures of the Fab fragments from IMC-11F8 and cetuximab.

They are very similar. The elbow angle for the Fab11F8 in the

complex is 173� ± 1� (among the eight copies in the asymmetric

unit), which is within the normal range (Stanfield et al., 2006). This

is larger than for FabC225 when bound to sEGFR (150�) and

significantly greater than for uncomplexed FabC225 (135�).

The VL domains of each Fab are remarkably similar. The root-

mean-square deviation (rmsd) upon superimposing all main-

chain atoms in the VL domain is 0.77 Å. This similarity extends

to the CDRs that deviate no more between the two structures

than other loops in this domain (Figure 7A). This is not unex-

pected, because the VL CDRs of each antibody belong to the

same Chothia canonical classes (class 2, 1, and 1 for L1, L2,

and L3) (Al-Lazikani et al., 1997). The majority of the interactions
, 216–227, February 2008 ª2008 Elsevier Ltd All rights reserved 223
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between sEGFR and the light chains of Fab11F8 and FabC225

are backbone hydrogen bonds (Figures 5A and 5B), particularly

in the case of L3. The conservation of the light-chain CDR struc-

tures between the two Fabs is likely to be important in defining

their similarly high affinities for EGFR.

When comparing Fab11F8 and FabC225 VH domains

(Figure 7B), it is clear that there are much larger main-chain de-

Figure 7. Comparison of the Structures of

Fab11F8 and FabC225

(A and B) The root-mean-square deviation (rmsd)

of Ca positions between Fab11F8 and FabC225

for VL domains (A) and VH domains (B). Backbone

atoms for each pair of domains were individually

superimposed using the program SUPERPOSE

(CCP4, 1994). The CDRs are marked and high-

lighted in yellow for VL and orange for VH.

(C) Cartoons of the variable domains of Fab11F8

and FabC225 looking up from the domain III bind-

ing site. Kabat CDRs are in dark gray. Key side

chains in the paratope are shown in stick repre-

sentation and colored as in Figure 3D.

viations. The rmsd is 1.78 Å for all main-

chain atoms in the VH domain (excluding

the insertion in H1 of Fab11F8) and there

are substantial (>2 Å) deviations in the

main-chain positions for each CDR, with

the greatest differences in H3

(Figure 7B). These loops serve as scaf-

folds to present the side chains that inter-

act with domain III of EGFR (Figure 7C)

and, as explained above, the VH interac-

tions with sEGFR are quite different for

the two antibodies, although they recognize almost identical epi-

topes.

Implications for IMC-11F8 as an EGFR-Targeted
Therapeutic
In addition to binding very similar epitopes, Fab11F8 and

FabC225 (Li et al., 2005) adopt almost identical orientations

Figure 8. Mechanism of Inhibition of EGFR

Activation by IMC-11F8 and by Cetuximab

(A) Cartoon model of Fab11F8 bound to sEGFR

colored as in Figure 3A. Domain I and the N-termi-

nal portion of domain II (gray) have been modeled

using the coordinates from PDB ID code 1YY9.

(B) Cartoon of the FabC225/sEGFR complex (PDB

ID code: 1YY9) colored as in (A).

(C) The mechanism of inhibition of ligand-induced

dimerization and activation of EGFR for IMC-11F8

and cetuximab based on the structures presented

here and in Li et al. (2005). The binding of the anti-

body to domain III of EGFR prevents ligand bind-

ing and might also sterically inhibit the conforma-

tional change that must occur for dimerization.

224 Structure 16, 216–227, February 2008 ª2008 Elsevier Ltd All rights reserved
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when bound to sEGFR. Figure 8A compares the structure of

Fab11F8 bound to full-length sEGFR (modeled based on the

Fab11F8/sEGFRd3 complex) with the FabC225/sEGFR com-

plex. One of the key features that defines the orientation of

both Fabs with respect to the domain III surface (and thus with

respect to sEGFR) is the close approach of L3 to the C-terminal

region of the domain III solenoid, together with a similarly orga-

nized array of L1 interactions (Figures 5A and 5B). With an almost

identical epitope, a very similar binding orientation, and a very

similar binding affinity, IMC-11F8 is likely to exert its effects on

EGFR inhibition through precisely the same mechanisms as ce-

tuximab, which we have discussed previously (Li et al., 2005).

Both antibody drugs block the ligand binding site on domain III

of EGFR, and (because of their high affinity for EGFR) can pre-

vent EGF from activating the receptor (Figure 8B). In addition,

the mode of EGFR binding exhibited by both IMC-11F8 and ce-

tuximab is such that both antibodies will sterically prevent the ex-

tracellular region of the receptor from adopting the extended

conformation that is required for dimerization. Thus, screening

of a human Fab library for an antibody that can bind and inhibit

EGFR and competes with cetuximab for receptor binding has

yielded an antibody that is remarkably similar to cetuximab in

its properties—although quite different in the details of its anti-

gen combining site. It seems unlikely that such a screen would

isolate an antibody so similar to cetuximab unless there is some-

thing unique about the epitope that both recognize, including the

properties that we have discussed above. Alternatively, the

mode of EGFR binding observed for IMC-11F8 and cetuximab

might be uniquely suited to EGFR inhibition. In either case, the

approach has yielded a fully human antibody that has very similar

properties to the chimeric cetuximab. Cetuximab has already

shown its value in the clinic but suffers from the problems as-

sociated with immune sensitivity to mouse-derived antibody

sequences. IMC-11F8 as a mechanistically very similar, but

fully human, antibody is likely to reproduce all of cetuximab’s

promise, but lack its disadvantages.

EXPERIMENTAL PROCEDURES

Crystallization and Data Collection

sEGFR and sEGFRd3 were produced as described (Ferguson et al., 2000;

Li et al., 2005). The Fab fragment of IMC-11F8 (Fab11F8) was prepared by

papain cleavage of the IgG protein. Fab11F8 complexes with sEGFR and

sEGFRd3 were purified as described (Li et al., 2005) and crystallized by the

hanging drop vapor diffusion method. Drops containing equal parts of

Fab11F8/sEGFR (10 mg/ml) and of reservoir (12% PEG3350, 1 M NaCl, 50

mM MES [pH 6.5]) were equilibrated over this reservoir at 25�C. To limit nucle-

ation and promote growth of large single crystals, the crystallization trays were

sequentially moved to conditions of decreasing temperature over 2 weeks,

ending at 4�C. Equal parts Fab11F8/sEGFRd3 (6 mg/ml) complex and reser-

voir (12% PEG3350, 250 mM [NH4]2SO4, 50 mM sodium acetate [pH 5.0])

were equilibrating over this reservoir at 25�C. Streak seeding produced large

single crystals. In each case, crystals were briefly exposed to a cryostabilizer

of reservoir supplemented with 15% ethylene glycol and flash-frozen in liquid

nitrogen. X-ray diffraction data (Table 1) were collected at the Cornell High

Energy Synchrotron Source (CHESS). Data were processed using HKL2000

(Otwinowski and Minor, 1997).

Structure Determination and Refinement

MR methods were used to solve both structures. Search models for sEGFR

were from PDB ID code 1YY9. For Fab11F8, a homology model was generated

using the program MODELLER (Eswar et al., 2006) using the light chain from
Structure 16
PDB ID code 1DN0 and heavy chain from PDB ID code 1CE1. For Fab/sEGFR,

an initial solution was found for the Fab plus domain III of sEGFR using the pro-

gram MOLREP (Vagin and Teplyakov, 1997). Attempts to locate domains I, II,

and IV using MR methods were unsuccessful. Following rounds of manual

model building in O (Jones et al., 1991) and refinement combined with density

modification using the programs REFMAC and DM (CCP4, 1994), interpretable

density was seen for domain IV and part of domain II of sEGFR. No interpret-

able density could be seen for domain I. The current model packs to form dis-

connected layers. At least some of domain I must be present, but this region of

sEGFR is presumably statically disordered.

For Fab11F8/sEGFRd3, an initial MR search employed two model frag-

ments: domain III of sEGFR and the Fv region of the Fab homology model.

Eight copies of each fragment were located using automatic search protocols

in the program Phaser (McCoy, 2007). With the positions of these eight Fv/

sEGFRd3 fragments fixed, the eight Fab constant regions (domains CH1 and

CL) could be located. The noncrystallographic symmetry (NCS) relationship

between the eight Fv/sEGFRd3 fragments and the CH1/CL fragments differs

slightly. Eight-fold NCS averaging was applied to generate an electronic den-

sity map using the program DM (CCP4, 1994) and the model was rebuilt using

the program Coot (Emsley and Cowtan, 2004). Later stages of refinement,

using the program REFMAC (CCP4, 1994), used no NCS restraints.

Generation of Binding Site sEGFR Mutations

Standard PCR directed mutagenesis was used to produce the appropriate

DNA in the pFastBac vector. The following mutations were made: Q408A/

Q409A, Q384A/Q408A/Q409A, K443A, S468I, N473A, and S468I/N473A.

Altered sEGFRs were produced exactly as for wild-type sEGFR (Ferguson

et al., 2000).

Binding Studies

Fab11F8 (50 mg/ml in 10 mM sodium acetate [pH 5.5]) was amine coupled

to a CM5 BIAcore sensor chip and SPR was used to measure binding

of wild-type and mutated versions of sEGFR to immobilized Fab11F8 as de-

scribed (Li et al., 2005). The effect of added Fab11F8 upon the binding

of 600 nM sEGFR to immobilized EGF was determined as described

(Li et al., 2005).
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